0

Full Content is available to subscribers

Subscribe/Learn More  >

Vibration Analysis of a Composite Helicopter Rotor Blade at Hovering Condition

[+] Author Affiliations
Pratik Sarker, Uttam K. Chakravarty

University of New Orleans, New Orleans, LA

Colin R. Theodore

NASA Ames Research Center, Mountain View, CA

Paper No. IMECE2016-65859, pp. V001T03A012; 10 pages
doi:10.1115/IMECE2016-65859
From:
  • ASME 2016 International Mechanical Engineering Congress and Exposition
  • Volume 1: Advances in Aerospace Technology
  • Phoenix, Arizona, USA, November 11–17, 2016
  • Conference Sponsors: ASME
  • ISBN: 978-0-7918-5051-0
  • Copyright © 2016 by ASME

abstract

The helicopter is an essential and unique means of transport nowadays and needs to hover in space for considerable amount of time. During hovering flight, the rotor blades continuously bend and twist causing an increased vibration level that affects the structural integrity of the rotor blade leading to ultimate blade failure. In order to predict the safe allowable vibration level of the helicopter rotor blade, it is important to properly estimate and monitor the vibration frequencies. Therefore, the mathematical model of a realistic helicopter rotor blade composed of composite material, is developed to estimate the characteristics of free and forced bending-torsion coupled vibration. The cross-sectional properties of the blade are calculated at first and are then included in the governing equations to solve the mathematical model. The natural frequencies and mode shapes of the composite helicopter rotor blade are evaluated for both the nonrotating and rotating cases. The time-varying bending and torsional deflections at the helicopter rotor blade tip are estimated with suitable initial conditions. The validation of the model is carried out by comparing the analytical frequencies with those obtained by the finite element model.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In