Full Content is available to subscribers

Subscribe/Learn More  >

Design of Injection Nozzle in Direct Metal Deposition (DMD) Manufacturing of Thin-Walled Structures Based on 3D Models

[+] Author Affiliations
Jingyuan Yan, Georges Fadel

Clemson University, Clemson, SC

Ilenia Battiato

San Diego State University, San Diego, CA

Paper No. DETC2016-59517, pp. V007T06A032; 10 pages
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7: 28th International Conference on Design Theory and Methodology
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5019-0
  • Copyright © 2016 by ASME


The Direct Metal Deposition (DMD) process is one of the most important metal based additive manufacturing techniques available today. In this study, a print head design optimization methodology is proposed based on the finite element modeling of powder distribution and substrate temperature distribution. The design methodology is applied to the deposition of Ti-6Al-4V powder in building thin-walled (≈ 0.7 mm) structures, which is also applicable to solid parts. The design objective is to find the optimal design of the injection nozzle shape that can maximize the powder usage and minimize laser energy needs, later defined as powder and laser energy efficiencies. A neural network is built to investigate the nozzle shape parameters based on the results from the 3D powder flow model. With the methodology proposed in this study, the optimal injection nozzle design can be found.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In