Full Content is available to subscribers

Subscribe/Learn More  >

Design and 3D Printing of Hierarchical Tissue Engineering Scaffolds Based on Mechanics and Biology Perspectives

[+] Author Affiliations
Paul Egan, Stephen J. Ferguson, Kristina Shea

Swiss Federal Institute of Technology, Zurich, Switzerland

Paper No. DETC2016-59554, pp. V007T06A002; 10 pages
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 7: 28th International Conference on Design Theory and Methodology
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5019-0
  • Copyright © 2016 by ASME


Continued scientific research is crucial for developing new biomedical products, such as tissue engineering scaffolds, that are difficult to optimize due to the complexity of interfacing mechanical and biological systems. In this paper, mechanical and biological perspectives are used to propose and implement an approach for designing hierarchical scaffolds that provide structural support in the body as tissue regenerates. Three sequential steps are proposed for defining design needs, generating design alternatives, and fabricating design prototypes. Design needs are determined by considering mechanical and biological performance requirements, experimental procedures, and fabrication constraints. The primary mechanical requirement is a scaffold’s need to maintain structural integrity, while biologically the scaffold should promote cellular growth. Scaffold design alternatives of four topology types are generated by altering design parameters that describe a scaffold’s structure. Trade-offs are revealed for scaffold porosity and surface area properties that are known to influence mechanical and biological scaffold performance. Scaffolds of each topology type are designed with 80% porosity and fabricated, which enables their potential use in scientific experiments to measure how property trade-offs influence scaffold performance. On the basis of currently available knowledge, a to-scale spinal scaffold implant is designed and fabricated with a graphically maximized surface area to porosity ratio for a hierarchical scaffold, which represents a potentially high performing design from both mechanical and biological perspectives. These results demonstrate the importance of multidisciplinary approaches for designing complex biomedical tissue scaffolds that could significantly improve healthcare through the development of new clinical products.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In