Full Content is available to subscribers

Subscribe/Learn More  >

Nonlinear Phenomena in the Single-Mode Dynamics in an AFM Cantilever Beam

[+] Author Affiliations
Laura Ruzziconi

eCampus University, Novedrate, Italy

Stefano Lenci

Polytechnic University of Marche, Ancona, Italy

Mohammad I. Younis

King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

Paper No. DETC2016-59571, pp. V006T09A040; 7 pages
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 12th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5018-3
  • Copyright © 2016 by ASME


This study deals with the nonlinear dynamics arising in an atomic force microscope cantilever beam. After analyzing the static behavior, a single degree of freedom Galerkin reduced order model is introduced, which describes the overall scenario of the structure response in a neighborhood of the primary resonance. Extensive numerical simulations are performed when both the forcing amplitude and frequency are varied, ranging from low up to elevated excitations. The coexistence of competing attractors with different characteristics is analyzed. Both the non-resonant and the resonant behavior are observed, as well as ranges of inevitable escape. Versatility of behavior is highlighted, which may be attractive in applications. Special attention is devoted to the effects of the tip-sample separation distance, since this aspect is of fundamental importance to understand the operation of an AFM. We explore the metamorphoses of the multistability region when the tip-sample separation distance is varied. To have a complete description of the AFM response, comprehensive behavior charts are introduced to detect the theoretical boundaries of appearance and disappearance of the main attractors. Also, extensive numerical simulations investigate the AFM response when both the forcing amplitude and the tip-sample separation distance are considered as control parameters. The main features are analyzed in detail and the obtained results are interpreted in terms of oscillations of the cantilever-tip ensemble. However, we note that all the aforementioned results represent the limit when disturbances are absent, which never occurs in practice.

Here comes the importance of overcoming local investigations and exploring dynamics from a global perspective, by introducing dynamical integrity concepts. To extend the AFM results to the practical case where disturbances exist, we develop a dynamical integrity analysis. After performing a systematic basin of attraction analysis, integrity profiles and integrity charts are drawn. The curves of constant percentage of integrity measure are detected, highlighting that they provide valuable quantitative information about the changes in the structural safety. Robustness as well as vulnerability to disturbances is examined. The practical range of existence of each branch is observed to be smaller, and sometimes remarkably smaller than the theoretical one. The issue of the dynamical integrity analysis in the AFM design is addressed, showing that these curves may be used to establish safety factors in order to operate the AFM according to the desired outcome, depending on the expected disturbances. Physical meaning and practical relevance of the nonlinear phenomena in the AFM engineering design are discussed.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In