0

Full Content is available to subscribers

Subscribe/Learn More  >

Dynamics of Upright Posture on an Active Balance Board With Tunable Time-Delay and Stiffness

[+] Author Affiliations
Denise R. Cruise, Arvind Raman

Purdue University, West Lafayette, IN

James R. Chagdes

Miami University, Oxford, OH

Paper No. DETC2016-60210, pp. V006T09A006; 6 pages
doi:10.1115/DETC2016-60210
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 12th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5018-3
  • Copyright © 2016 by ASME

abstract

Neurological disorders, a concussion, or aging can extend the time-delay in the human neuromuscular balance system; this time-delay increase has been shown [5] to be an important factor contributing to the loss of balance. However, commercial balance boards used to help improve individual’s balance deficiencies do not utilize time-delay as a tunable parameter. In order to systematically study stiffness and time-delay induced instabilities in standing posture, we developed an active balance board system with controllable torsional board stiffness, as well as an added controllable feedback time-delay of the torsional board. Using this dynamical system we confirmed the presence of two distinct mechanisms of instability: insufficient stiffness leading to tipping posture and excessive time-delays leading to limit cycle oscillations. We expect that this active balance board will allow for the early identification of an increased fall-risk, especially for subjects with extended time-delays and could help provide insights into how the human postural system adapts to various environments.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In