0

Full Content is available to subscribers

Subscribe/Learn More  >

The Hybrid Predictive Dynamics Method for Analysis, Simulation and Prediction of Human Motion

[+] Author Affiliations
Mahdiar Hariri

Wichita State University, Wichita, KS

Paper No. DETC2016-59998, pp. V006T09A005; 10 pages
doi:10.1115/DETC2016-59998
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 6: 12th International Conference on Multibody Systems, Nonlinear Dynamics, and Control
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5018-3
  • Copyright © 2016 by ASME

abstract

The ‘Hybrid Predictive Dynamics Method for Digital Human Modeling’ is analyzed in this work. The ‘Hybrid’ prefix mentioned in the literature recently [1], refers to the use of motion capture data for improving human motion simulations. This use of motion capture compensates for the inherent weaknesses of purely theoretical motion prediction due to deficiencies in computational power or available theoretical backgrounds. In this work, it is shown that while using the ‘Hybrid’ the more precisely and finely the human motion is modeled (if computational and theoretical limitations allow), the less will be the need for the ‘Hybrid’ method and the more will the human model be able to change the prediction if the inputs are varied (cause and effect). Several human motion scenarios are mentioned in this work. These motion tasks are: “Jogging around Markers”, “Rolling Over”, “Getting up from Prone”, “Vertical Jumping” and “Kneeling and Aiming”. The digital human model is a full-body, three dimensional model with 55 degrees of freedom. Six degrees of freedom specify the global position and orientation of the coordinate frame attached to the pelvic point of the digital human and 49 degrees of freedom represent the revolute joints which model the human joints and determine the kinematics of the entire digital human. Motion is generated by a multi-objective optimization approach. The optimization problem is subject to constraints which represent the limitations of the environment, the digital human model and the motion task. Design variables are the joint angle profiles. All the forces, inertial, gravitational as well as external, are known, except the ground reaction forces. The feasibility of the generation of that arbitrary motion by using the given ground contact areas is ensured by using the well-known Zero Moment Point (ZMP) constraint.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In