Full Content is available to subscribers

Subscribe/Learn More  >

Design, Fabrication, and Modeling of an Electric-Magnetic Self-Folding Sheet

[+] Author Affiliations
Landen Bowen, Kara Springsteen, Saad Ahmed, Erika Arrojado, Mary Frecker, Timothy W. Simpson

Pennsylvania State University, University Park, PA

Paper No. DETC2016-60332, pp. V05BT07A025; 11 pages
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5B: 40th Mechanisms and Robotics Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5016-9
  • Copyright © 2016 by ASME


A concept recently proposed by the authors is that of a multi-field sheet that folds into several distinct shapes based on the applied field, be it magnetic, electric, or thermal. In this paper the design, fabrication, and modeling of a multi-field bifold is presented that utilizes magneto-active elastomer (MAE) to fold along one axis and P(VDF-TrFE-CTFE) terpolymer to fold along the other axis.

In prior work a dynamic model of self-folding origami was developed which simulated the effect of magneto-active materials on origami-inspired designs. This dynamic model is extended to include the effect of electroactive polymers (EAP) by approximating them as combinations of torques. The accuracy of this approximation is validated using experimental data from a terpolymer-actuated design known as the barking dog. After adjusting crease stiffness within the dynamic model, it shows good correlation with experimental data, indicating that the developed EAP approximation is accurate.

With the capabilities of the dynamic model improved by the EAP approximation method and a refined MAE approximation, the multi-field bifold can be accurately modeled. The model is compared to experimental data obtained from the fabricated multi-field bifold, and is found to predict well the fold angles of the sample. This validation is a first step to the simulation, design, and fabrication of more complicated multi-field sheets.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In