0

Full Content is available to subscribers

Subscribe/Learn More  >

Characterization of Self-Folding Origami Structures Using Magneto-Active Elastomers

[+] Author Affiliations
Elaine Sung, Anil Erol, Mary Frecker, Paris von Lockette

Pennsylvania State University, University Park, PA

Paper No. DETC2016-59919, pp. V05BT07A020; 7 pages
doi:10.1115/DETC2016-59919
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5B: 40th Mechanisms and Robotics Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5016-9
  • Copyright © 2016 by ASME

abstract

Magneto-active elastomers (MAEs) are polymers with magnetic particles that are capable of aligning with an external magnetic field; this self-alignment ability is one reason why MAEs can be used as actuators for folding or bending in origami engineering. The focus of this paper is on experimental characterization and finite element modeling of an MAE folding accordion structure. The goal is to understand the relationships among the applied magnetic field, displacement of the structure during actuation, and the resultant reaction force generated. This relationship is important for applications where force generation caused by the actuation of MAE structures is required.

Data show that force increases with increasing magnetic field, and the work done by the structure can also be calculated by integrating the force. Good agreement between the finite element analysis and experimental data is shown. Future methods for improving experimentation and modeling are discussed based on the results.

Copyright © 2016 by ASME
Topics: Elastomers

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In