0

Full Content is available to subscribers

Subscribe/Learn More  >

Advanced Parallel Actuation of a Serial Robotic Leg

[+] Author Affiliations
Nathan Cahill, Thomas G. Sugar

Arizona State University, Tempe, AZ

Matthew Holgate, Kyle Schroeder

SpringActive, Inc., Tempe, AZ

Paper No. DETC2016-59268, pp. V05AT07A056; 10 pages
doi:10.1115/DETC2016-59268
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 40th Mechanisms and Robotics Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5015-2
  • Copyright © 2016 by ASME

abstract

Advanced actuation methods are needed in legged robots in order to build robust and efficient robotic systems. State of the art robots either consume much more energy than their biological counterparts or are dramatically less mobile. Advanced actuation methods are necessary to achieve both efficiency and mobility. Many highly mobile legged robots are actuated in serial, but serial actuation has many known weaknesses. This research explores a new and promising method of actuation that is a hybrid of serial and parallel actuation. This method is able to draw from the large body of research conducted on parallel manipulators over the last several decades. This research has shown that parallel manipulators can offer many advantages over serial arms including: smaller mobile mass, more rigidity, faster end effector speeds, and large force capacity. All of these advantages are well suited for the requirements of legged robots. In this paper, the authors detail the implementation of this advanced actuation method from conceptualization to the first stages of testing. It details the choice of configuration, which was important, and somewhat counter intuitive. It also walks through the kinematic solutions, showing relatively simple solutions to challenging problems. The goal of the work is to use multiple, small motors in parallel to actuate the hip and the knee. In this way, during the stance phase of gait, multiple motors can be used in parallel to provide a powerful burst for push-off. Our two-link parallel structure allows the motors to cross multiple joints and therefore can be used to actuate several joints at once. In addition, by mounting motors at the base, the inertia of the leg is greatly reduced.B@Creating a fast, efficient leg structure is the first step in our project. The higher level goal of this research is to create a quadruped robot that is designed for efficient and fast running. The novel leg structure described in this paper will be capable of the types of motions associated with high speed gait. The robot needs to be capable of both high speed motions and high force output, without being excessively heavy. It should also be capable of accurate three dimensional control, and meet certain manipulability criterion. In this paper we show a functional and promising 3D printed leg prototype. This paper will provide a detailed description of this unique approach to actuation. It will also show the solution to the kinematic equations. Finally, as a proof of concept, the leg was moved in a gait pattern over a treadmill.

Copyright © 2016 by ASME
Topics: Robotics

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In