0

Full Content is available to subscribers

Subscribe/Learn More  >

Optimal Task Planning of Humanoid in Cluttered Environment

[+] Author Affiliations
Hari Teja, Abhilash Balachandran

IIIT Hyderabad, Hyderabad, India

Suril V. Shah

Indian Institute of Technology Jodhpur, Jodhpur, India

Paper No. DETC2016-60545, pp. V05AT07A051; 7 pages
doi:10.1115/DETC2016-60545
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 40th Mechanisms and Robotics Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5015-2
  • Copyright © 2016 by ASME

abstract

Due to high degrees of freedom of humanoids and induced redundancy, there are multiple ways of performing a given manipulation task. Finding optimal ways of performing tasks is one desirable property of any motion planning framework. This includes optimizing the path with respect to a certain objective function. Additionally, a variety of constraints need to be satisfied such as stability, self-collision and collision with objects in the environment and also kinematic closed-loop chains formed during the task. Time requirements of the planner is another important aspect that drives us to use sampling based methods. In this paper, we present an asymptotically optimal sampling based approach for generating statically stable motion plans. We use RRT*-connect algorithm which we obtained by modifying RRT-Connect. Moreover, we use a gradient based inverse kinematics solver to generate goal configurations. We evaluate the efficacy of our approach in the results section in a simulation environment on Hubo+ robot model. The results show a significant improvement in path costs as well as overall optimality of the given task.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In