0

Full Content is available to subscribers

Subscribe/Learn More  >

Design and Preliminary Testing of a Prototype for Evaluating Lower Leg Trajectory Error as an Optimization Metric for Prosthetic Feet

[+] Author Affiliations
Kathryn M. Olesnavage, Amos G. Winter, V

Massachusetts Institute of Technology, Cambridge, MA

Paper No. DETC2016-60565, pp. V05AT07A038; 8 pages
doi:10.1115/DETC2016-60565
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 40th Mechanisms and Robotics Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5015-2
  • Copyright © 2016 by ASME

abstract

This work presents the design and preliminary testing of a prosthetic foot prototype intended for evaluating a novel design objective for passive prosthetic feet, the Lower Leg Trajectory Error (LLTE). Thus far, all work regarding LLTE has been purely theoretical. The next step is to perform extensive clinical testing. An initial prototype consisting of rotational ankle and metatarsal joints with constant rotational stiffness was optimized and built, but at 2 kg it proved too heavy to use in clinical testing. A new conceptual foot architecture intended to reduce the weight of the final prototype is presented and optimized for LLTE. This foot consists of a rotational ankle joint with constant stiffness of 6.1 N·m/deg, a rigid structure extending 0.08 m from the ankle-knee axis, and a cantilever beam forefoot with bending stiffness 5.4 N·m2. A prototype was built using machined delrin for the rigid structure, three parallel extension springs offset along a constant radius cam from a pin joint ankle, and machined nylon as the beam forefoot. In preliminary testing, it was determined that, despite efforts to minimize weight and size, this particular design was still too heavy and bulky as a result of the extension springs to be used in extensive clinical testing. Future work will focus on reducing the weight further by replacing linear extension springs with flexural elements before commencing with the clinical study.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In