0

Full Content is available to subscribers

Subscribe/Learn More  >

The Design and Analysis of a Compliant Constant-Force Mechanism

[+] Author Affiliations
Zhongtian Xie, Lifang Qiu

University of Science and Technology Beijing, Beijing, China

Paper No. DETC2016-59348, pp. V05AT07A011; 7 pages
doi:10.1115/DETC2016-59348
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 40th Mechanisms and Robotics Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5015-2
  • Copyright © 2016 by ASME

abstract

Compliant constant-force mechanisms (CFM) are a type of compliant mechanism which produce a reaction force at the output port that does not change for a large range of input motion. This paper describes a new compliant CFM, introduces its design and configuration-improvement process. A finite element analysis (FEA) model of the compliant CFM was created to evaluate its constant force behavior. The FEA result shows that when the displacement is Δ = 4 mm, the compliant CFM maintains a nearly constant force in the operational displacement range of 1.31 mm to 4 mm with an error of 5.05%. The operational range accounts for 67% of the total motion. This compliant CFM can be used to regulate the contact force of a robot end-effector or as an electrical connector.

Copyright © 2016 by ASME
Topics: Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In