0

Full Content is available to subscribers

Subscribe/Learn More  >

Multibody-Based Topology Synthesis Method for Large Stroke Flexure Hinges

[+] Author Affiliations
M. Naves, D. M. Brouwer, R. G. K. M. Aarts

University of Twente, Enschede, Netherlands

Paper No. DETC2016-59287, pp. V05AT07A009; 8 pages
doi:10.1115/DETC2016-59287
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 5A: 40th Mechanisms and Robotics Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5015-2
  • Copyright © 2016 by ASME

abstract

Large stroke flexure mechanisms inherently lose stiffness in supporting directions when deflected due to load components in compliant bending and torsion directions. To maximize performance over the entire range of motion, a topology optimization suited for large stroke mechanisms is required. In this paper a new multibody-based topology synthesis method is presented for optimizing large stroke flexure hinges. This topology synthesis consists of a layout variation strategy based on a building block approach combined with a shape optimization to obtain the optimal design tuned for a specific application. A derivative free shape optimization method is used to optimize high complexity flexure mechanisms in a broad solution space. To obtain the optimal layout, three predefined “building blocks” are proposed which are consecutively combined to find the best layout with respect to a specific design criteria. More specifically, this new method is used to optimize a flexure hinge aimed at maximizing the first disturbing eigenfrequency. The optimized topology shows an increase in frequency of a factor ten with respect to the customary three flexure cross hinge, which represents a huge improvement in performance. The numerically predicted natural frequencies and mode shapes have been verified experimentally.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In