Full Content is available to subscribers

Subscribe/Learn More  >

Multiple-Mode Dynamic Model for Piezoelectric Micro-Robot Walking

[+] Author Affiliations
Jinhong Qu, Kenn R. Oldham

University of Michigan, Ann Arbor, MI

Paper No. DETC2016-59621, pp. V004T08A023; 7 pages
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 21st Design for Manufacturing and the Life Cycle Conference; 10th International Conference on Micro- and Nanosystems
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5014-5
  • Copyright © 2016 by ASME


A multiple-mode dynamic model is developed for a piezoelectrically-actuated micro-robot with multiple legs. The motion of the micro robot results from dual direction motion of piezoelectric actuators in the legs, while the complexity of micro robot locomotion is increased by impact dynamics. The dynamic model is developed to describe and predict the micro robot motion, in the presence of asymmetrical behavior due to non-ideal fabrication and variable properties of the underlying terrain. The dynamic model considers each robot leg as a continuous structure moving in two directions derived from beam theory with specific boundary condition. Robot body motion is modeled in six degrees of freedom using a rigid body approximation. Individual modes of the resulting multimode robot are treated as second order linear systems. The dynamic model is tested with a meso-scale robot prototype having a similar actuation scheme as micro-robots. In accounting for the interaction between robot and ground, the dynamic model with first two modes of each leg shows good match with experimental results for the mesoscale prototype, in terms of both magnitude and the trends of robot locomotion with respect to actuation conditions.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In