Full Content is available to subscribers

Subscribe/Learn More  >

Dynamics of Strongly Coupled Fluid-Filled Micro-Cavities and PMUTs in Integrated Microfluidic Devices

[+] Author Affiliations
Ajay Dangi, Dhananjay Deshmukh, Rudra Pratap

Indian Institute of Science, Bangalore, India

Robin Singh

National Institute of Technology Surathkal, Mangaluru, India

Paper No. DETC2016-59910, pp. V004T08A008; 7 pages
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 21st Design for Manufacturing and the Life Cycle Conference; 10th International Conference on Micro- and Nanosystems
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5014-5
  • Copyright © 2016 by ASME


In this work, we present a novel device developed by integration of an array of Piezoelectric Micromachined Ultrasonic Transducers (PMUTs) with a microfluidic chip that can be used for characterizing the acoustical properties of the liquid present in the back-cavity of the PMUT. PMUT membrane operates in flexural mode of vibration and it is directly coupled with the cylindrical back-cavity formed during the release of the PMUT membrane. This leads to very strong structural-acoustic coupling between the PMUT and the liquid present in the its back-cavity. Presence of fluid around the thin PMUT membrane causes a significant reduction in the resonant frequencies of the PMUT due to mass loading imposed by the surrounding fluid. It also leads to the excitation of the acoustic modes of the cylindrical back-cavity when the PMUT vibrates near the fundamental acoustic frequencies of the cavity. These acoustic reverberations appear in the vibration response of the PMUT in form of additional resonant peaks. Further we explore the feasibility of capturing the acoustic signature of microbubbles introduced in the back-cavity liquid. Microbubbles are generated on the microfluidic chip using flow focusing technique and introduced in the cylindrical back-cavity of the PMUT through a network of channels and wells made on PDMS and adhered to the PMUT from the backside. This approach can provide an alternative method for on-chip characterization of microbubbles.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In