0

Full Content is available to subscribers

Subscribe/Learn More  >

Quantifying the Impact of Sustainable Product Design Decisions in the Early Design Phase Through Machine Learning

[+] Author Affiliations
Addison Wisthoff, Vincenzo Ferrero, Tony Huynh, Bryony DuPont

Oregon State University, Corvallis, OR

Paper No. DETC2016-59586, pp. V004T05A043; 10 pages
doi:10.1115/DETC2016-59586
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 21st Design for Manufacturing and the Life Cycle Conference; 10th International Conference on Micro- and Nanosystems
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5014-5
  • Copyright © 2016 by ASME

abstract

As more companies and researchers become interested in understanding the relationship between product design decisions and eventual environmental impact, proposed methods have explored meeting this demand. However, there are currently limited methods available for use in the early design phase to help quantify the environmental impact of making design decisions. Current methods, primarily vetted Life Cycle Assessment (LCA) methods, require the designer to wait until later in the design phase, when a product’s design is more defined; alternatively, designers are resigned to relying on prior sustainable design experience and empirical knowledge. There is a clear need to develop methods that quantitatively inform designers of the environmental impact of design decisions during the early design phase (particularly during concept generation), as this allows for reexamination of decisions before they become costly or time-intensive to change. The current work builds on previous research involving the development of a search tree of sustainable design knowledge, which, applied during the early design phase, helps designers hone in on the impact of product design decisions. To assist in quantifying the impact of these design decisions, the current work explores the development of a weighting system associated with each potential design decision. The work presented in this paper aims to quantify the general environmental impact potential design decisions have on a consumer product, by using a multi-layer perceptron neural network with back propagation training — a method of machine learning — to relate the life-cycle assessment impact of 37 case study products to product attributes. By defining the relationship between LCA data and product attributes, designers in the early design phase will be more informed of which product attributes have the largest environmental impact, such that the designer can redesign the product to have reduce this impact.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In