0

Full Content is available to subscribers

Subscribe/Learn More  >

Prediction of Cutting Forces of Solid End Mills With Differential Helix Angles: A Numerical Approach

[+] Author Affiliations
Hans-Henrik Westermann, Benjamin Thorenz, Robert Müller

Fraunhofer IPA, Bayreuth, Germany

Rolf Steinhilper

University of Bayreuth, Bayreuth, Germany

Paper No. DETC2016-59122, pp. V004T05A036; 8 pages
doi:10.1115/DETC2016-59122
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 21st Design for Manufacturing and the Life Cycle Conference; 10th International Conference on Micro- and Nanosystems
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5014-5
  • Copyright © 2016 by ASME

abstract

Solid end mills with multi-section cutting edges and variable helix angles are available for application. New types of solid end mills for low energy consumption have recently been developed. These so-called Low Power Cutting (LPC)-Tools are characterized by differential helix angles.

Compared to solid end mills with variable helix angles, the new differential helix angles change their pitch continuously over the cutting edge length. Due to this fact the cutting conditions are not in a constant state during the revolution of the cutting tool. Existing mathematical approaches for the calculation of cutting forces only consider constant helix angles in milling operations.

This paper describes an approach for the prediction of cutting forces for differential helix angles. The developed mathematical model is based on geometrical considerations. Due to a continuously changing pitch over the cutting edge length a numerical approach for the mathematical model is chosen.

Copyright © 2016 by ASME
Topics: Cutting

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In