0

Full Content is available to subscribers

Subscribe/Learn More  >

Scenario-Based Robustness Analysis of Optimized I.D.E.-Style Treadle Pump Designs

[+] Author Affiliations
Christopher McComb

Carnegie Mellon University, Pittsburgh, PA

Nathan G. Johnson

Arizona State University, Mesa, AZ

Brandon T. Gorman

Arizona State University, Tempe, AZ

Paper No. DETC2016-60127, pp. V004T05A026; 10 pages
doi:10.1115/DETC2016-60127
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 21st Design for Manufacturing and the Life Cycle Conference; 10th International Conference on Micro- and Nanosystems
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5014-5
  • Copyright © 2016 by ASME

abstract

Poverty affects hundreds of millions of people globally. Market-based strategies can help alleviate poverty in developing countries by encouraging entrepreneurial activity and have the potential to be more effective than traditional approaches, such as development aid from countries or non-governmental organizations. Development organizations often target the agricultural sector because of the prevalence of subsistence and small-scale farming, particularly in rural regions of developing countries. Improving the reliability of irrigation techniques can help farmers expand out of primarily subsistence farming and begin to sell a portion of their crop, thus achieving the objectives of market-based poverty alleviation. Human-powered pumps are a popular tool used in irrigation because they require low capital cost and negligible operating cost. Previous work provided a model for finding Pareto-optimal IDE-style treadle pump designs. This work utilizes that model to produce a dense set of Pareto-optimal designs, and then investigates the robustness of the designs by simulating their performance in a variety of modified use scenarios. Our results show that pumps optimized for low flow rates (less than 3.0 L/s) are highly robust, particularly with respect to age-related changes in the operator’s stature or mobility. In addition, these pumps can operate with near-optimal efficiency across a variety of target flow rates and well depths. These pumps are ideal for single family use or for shared use amongst multiple families in a village. Pumps optimized for flow rates greater than 3.0 L/s are less robust with respect to changes of operator stature (experiencing decreases in flow rate of up to 60%) but may be suitable for use on farms or by service providers.

Copyright © 2016 by ASME
Topics: Pumps , Robustness

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In