Full Content is available to subscribers

Subscribe/Learn More  >

Understanding the Impact of Occupancy Trends in Sustainable Housing Designs

[+] Author Affiliations
Joseph Piacenza, Salvador Mayoral, Sean Lin, Lauren Won, Xava Grooms

California State University Fullerton, Fullerton, CA

Paper No. DETC2016-59588, pp. V004T05A020; 8 pages
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 21st Design for Manufacturing and the Life Cycle Conference; 10th International Conference on Micro- and Nanosystems
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5014-5
  • Copyright © 2016 by ASME


As sustainable building mandates become more prevalent in new commercial buildings, it is a challenge to create a broad, one-size-fits-all certification process. While designers can estimate energy usage with computation tools such as model based design, anticipating the post occupancy usage is more difficult. Understanding energy usage trends is especially complicated in university student housing buildings, where occupancy varies significantly as a function of enrollment and course scheduling. This research explores the effect of student occupancy on both predicted and actual energy usage in a LEED (Leadership in Energy and Environmental Design) Platinum certified student housing complex. A case study is presented from the California State University Fullerton (CSUF) campus, and examines diversity factor, defined as a building’s instantaneous energy usage as a percentage of the maximum allowable usage during a period of time, trends throughout the academic year. The CSUF case diversity factor is compared to the diversity factor used in predictive models for obtaining LEED certification, and the mandates that govern the models (e.g., ASHRAE 90.1). The results of the analysis show the benefits of considering post occupancy usage in sustainable building designs, and recommendations are presented for creating unique and application based computational models, early in the design process. This research has broad applications, and can extend to sustainable building design in other organizations, whose operational schedule falls outside of current prediction methods for sustainability mandates.

Copyright © 2016 by ASME
Topics: Sustainability



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In