Full Content is available to subscribers

Subscribe/Learn More  >

Additive Manufacturing of Subject-Specific Spine Model for In-Vitro Intrathecal Drug Delivery Study

[+] Author Affiliations
Lu Lu, Kevin Tangen, Theodore Gabor, Yayue Pan, Andreas Linninger, Neil Purandare

University of Illinois at Chicago, Chicago, IL

Paper No. DETC2016-59066, pp. V004T05A013; 8 pages
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 4: 21st Design for Manufacturing and the Life Cycle Conference; 10th International Conference on Micro- and Nanosystems
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5014-5
  • Copyright © 2016 by ASME


Intrathecal (IT) drug delivery is a preferred treatment for chronic pain, brain cancers and spasticity. However, the application of IT drug delivery treatment is still limited by the large patient-to-patient variations and numerous kinds of rare genetic diseases. A fast, relatively cheap and subject-specific in-vitro method to study the drug bio-dispersion mechanism and optimize the intrathecal drug therapies for individual patients is in great need. In this study, we will investigate the model design and additive manufacturing process for producing a subject-specific spine model, which will simulate the interaction of the real human spine with cerebrospinal fluid (CSF). Research issues including watertight 3D printable model construction and 3D printing of anatomical accurate, physiological functional spine models are discussed in this paper. A pipeline of additive manufacturing in-vitro subject-specific models for study of cerebrospinal fluid and drug transport in spine is presented.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In