0

Full Content is available to subscribers

Subscribe/Learn More  >

Polytechnic Design Thinking From the Beginning

[+] Author Affiliations
Rustin Webster, Joseph Dues, Jr.

Purdue University, New Albany, IN

Paper No. DETC2016-59090, pp. V003T04A020; 6 pages
doi:10.1115/DETC2016-59090
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 18th International Conference on Advanced Vehicle Technologies; 13th International Conference on Design Education; 9th Frontiers in Biomedical Devices
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5013-8
  • Copyright © 2016 by ASME

abstract

In August 2013, the Purdue University President and Board of Trustees designated the transformation of the College of Technology into the Purdue Polytechnic Institute as one of Purdue’s “Big Moves”. This transformation requires changes of enormous breadth and depth for everyone in the college. Now, almost half-way through the transformation, milestones and expectations continue to be met. However, much work is still to be done to fully execute a successful transformation. The transformation continues to allow faculty extraordinary opportunities to revise many parts of the college, including curricula, instruction methods, learning spaces, etc. A key characteristic of the transformation is creating learning environments that are student-centered with innovative instruction techniques.

TECH 120 – “Design Thinking in Technology”, is a freshman level survey course designed to develop a student’s perspective and enhance their skills in living and working in a technological society while introducing them to the College of Technology — now Purdue Polytechnic. Prior to the fall 2015 semester, Purdue Polytechnic New Albany decided to redesign portions of their TECH 120 course. The aim was to improve team project-based learning opportunities while incorporating modernized teaching methods. With a fresh set of eyes and collaboration between new and tenured faculty the projects, lectures, and assessments were all analyzed looking for areas for higher level of innovation and creativity. The aim for the overall effort was to increase student success rate (i.e. successful completion of assigned project tasks) while improving the alignment with elements of the transformation.

In past semesters, the course consisted of a mixture of traditional instructor-led lectures and a series of team projects. Each individual project part was intended to build upon each other while promoting the successful completion of a much larger final task. At the core of each project was LEGO® MINDSTORMS® NXT. The second generation set in the MINDSTORMS series is a programmable robotics kit that is based on robotics technology similar to that used in industry today. Each group (3–4 students) were given their own kit at the beginning of the semester. The final project statement was to design and build an autonomous robot which could identify and follow a light source attached to an instructor’s robot, which would be driven around a room. This task proved to be difficult and had a low success rate.

The new project is to design and build a robot that autonomously draws the initials (first and last name) of each team member within an assigned writing zone on a poster. The constant and open collaboration between the two TECH 120 instructors and the incorporation of student input proved to be important during the redesign. The success rate at the end of the semester increased. From course surveys, data also shows that students’ enjoyment and interest in the final project increased.

This short paper will describe the introduction to a team project-based activity in a polytechnic setting which uses modernized teaching methods. Preliminary findings and observations will be presented.

Copyright © 2016 by ASME
Topics: Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In