0

Full Content is available to subscribers

Subscribe/Learn More  >

Countersteering to Recover Straight Ahead Running After a Disturbance

[+] Author Affiliations
Fabio della Rossa, Massimiliano Gobbi, Giampiero Mastinu, Giorgio Previati

Politecnico di Milano, Milan, Italy

Paper No. DETC2016-60001, pp. V003T01A009; 6 pages
doi:10.1115/DETC2016-60001
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 3: 18th International Conference on Advanced Vehicle Technologies; 13th International Conference on Design Education; 9th Frontiers in Biomedical Devices
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5013-8
  • Copyright © 2016 by ASME

abstract

The paper deals with the analysis of a manoeuvre occurring frequently before crashes. Due to an external disturbance the straight ahead running of a vehicle is degradated into an oscillating motion. The driver is required to countersteer to recover the straight ahead motion. The bifurcation analysis of a simple model describing a vehicle+driver running straight ahead is performed. The mechanical model of the car has two degrees of freedom and the related equations of motion contain the non linear tyre characteristics. The driver is described by a non linear model defined by three parameters, namely the gain (steering wheel angle per lateral deviation from desired path), the prevision distance, the reaction time delay.

Unreferenced bifurcations are discovered for the understeering vehicle. A supercritical Hopf bifurcation may occur as forward speed is increased. Also tangent (fold) bifurcations occur as the speed (or disturbance) are further increased.

The vehicle+driver model is validated by means of a number of tests performed in a track. The validation relies on the identification of driver’s parameters. The track is equipped with a plank sliding laterally when the vehicle rear axle passes on it. Such a lateral excitation applies a disturbance to the vehicle which initiates a spin to be counteracted by the driver. An analysis is performed on driver’s parameters identification. Such parameter identification seems a possible way to assess single driver’s ability to perform recovery manoeuvres.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In