Full Content is available to subscribers

Subscribe/Learn More  >

Shape Parameterization Comparison for Full-Film Lubrication Texture Design

[+] Author Affiliations
Yong Hoon Lee, Jonathon Schuh, Randy H. Ewoldt, James T. Allison

University of Illinois at Urbana-Champaign, Urbana, IL

Paper No. DETC2016-60168, pp. V02BT03A037; 11 pages
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2B: 42nd Design Automation Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5011-4
  • Copyright © 2016 by ASME


Minimizing energy loss and improving system load capacity and compactness are important objectives for fluid power applications. Recent studies have revealed that a micro-textured surface can reduce friction in full-film lubrication, and an asymmetric textured surface can further improve the performance by reducing friction and increasing normal force simultaneously. As an extension of these previous discoveries, we explore how enhanced texture design can maximize these objectives together. We design the surface texture using a set of distinct parameterizations, ranging from simple to complex (including very general geometries), to improve friction and normal force properties beyond what is possible for limited texture geometries. Here we use a rotational visco-rheometer configuration with a fixed bottom disc, a periodic textured surface, and a rotating top flat disc. The Reynolds equation is formulated in a cylindrical coordinate system and solved using a pseudo-spectral method to model Newtonian fluid flow within the gap between discs. Model assumptions include incompressibility, steady flow, constant viscosity, and a small gap height to texture radius ratio. Multiobjective optimization problems are solved using the epsilon-constraint method with an interior-point algorithm. The trade-off between competing objectives is quantified, revealing important insights. Arbitrary continuous texture geometries are represented using two dimensional cubic spline interpolation. Shifting to more general texture geometries resulted in significant simultaneous improvement in both performance metrics for full-film lubrication texture design. An important qualitative result is that textures resembling a helical blade tend to improve performance for rotating contacts in fluid power systems.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In