0

Full Content is available to subscribers

Subscribe/Learn More  >

Brass Instruments Design Using Physics-Based Sound Simulation Models and Surrogate-Assisted Derivative-Free Optimization

[+] Author Affiliations
Robin Tournemenne, Jean-François Petiot

IRCCyN, Nantes, France

Bastien Talgorn

GERAD, Montréal, QC, Canada

Michael Kokkolaras

McGill University, Montréal, QC, Canada

Paper No. DETC2016-59532, pp. V02BT03A028; 12 pages
doi:10.1115/DETC2016-59532
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2B: 42nd Design Automation Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5011-4
  • Copyright © 2016 by ASME

abstract

This paper presents a method for design optimization of brass wind instruments. The shape of a trumpet’s bore is optimized to improve intonation using a physics-based sound simulation model. This physics-based model consists of an acoustic model of the resonator (input impedance), a mechanical model of the excitator (the lips of a virtual musician) and a model of the coupling between the excitator and the resonator. The harmonic balance technique allows the computation of sounds in a permanent regime, representative of the shape of the resonator according to control parameters of the virtual musician. An optimization problem is formulated, in which the objective function to be minimized is the overall quality of the intonation of the different notes played by the instrument (deviation from the equal-tempered scale). The design variables are the physical dimensions of the resonator. Given the computationally expensive function evaluation and the unavailability of gradients, a surrogate-assisted optimization framework is implemented using the mesh adaptive direct search algorithm (MADS). Surrogate models are used both to obtain promising candidates in the search step of MADS and to rank-order additional candidates generated by the poll step of MADS. The physics-based model is then used to determine the next design iterate. Two examples (with two and five design optimization variables, respectively) are presented to demonstrate the approach. Results show that significant improvement of intonation can be achieved at reasonable computational cost. The implementation of this method for computer-aided instrument design is discussed, considering different objective functions or constraints based on intonation but also on the timbre of the instrument.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In