0

Full Content is available to subscribers

Subscribe/Learn More  >

Expected-Improvement-Based Methods for Adaptive Sampling in Multi-Objective Optimization Problems

[+] Author Affiliations
Jesper Kristensen, You Ling, Isaac Asher, Liping Wang

GE Global Research, Niskayuna, NY

Paper No. DETC2016-59266, pp. V02BT03A024; 10 pages
doi:10.1115/DETC2016-59266
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2B: 42nd Design Automation Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5011-4
  • Copyright © 2016 by ASME

abstract

Adaptive sampling methods have been used to build accurate meta-models across large design spaces from which engineers can explore data trends, investigate optimal designs, study the sensitivity of objectives on the modeling design features, etc. For global design optimization applications, adaptive sampling methods need to be extended to sample more efficiently near the optimal domains of the design space (i.e., the Pareto front/frontier in multi-objective optimization). Expected Improvement (EI) methods have been shown to be efficient to solve design optimization problems using meta-models by incorporating prediction uncertainty.

In this paper, a set of state-of-the-art methods (hypervolume EI method and centroid EI method) are presented and implemented for selecting sampling points for multi-objective optimizations. The classical hypervolume EI method uses hyperrectangles to represent the Pareto front, which shows undesirable behavior at the tails of the Pareto front. This issue is addressed utilizing the concepts from physical programming to shape the Pareto front. The modified hypervolume EI method can be extended to increase local Pareto front accuracy in any area identified by an engineer, and this method can be applied to Pareto frontiers of any shape. A novel hypervolume EI method is also developed that does not rely on the assumption of hyperrectangles, but instead assumes the Pareto frontier can be represented by a convex hull. The method exploits fast methods for convex hull construction and numerical integration, and results in a Pareto front shape that is desired in many practical applications.

Various performance metrics are defined in order to quantitatively compare and discuss all methods applied to a particular 2D optimization problem from the literature. The modified hypervolume EI methods lead to dramatic resource savings while improving the predictive capabilities near the optimal objective values.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In