Full Content is available to subscribers

Subscribe/Learn More  >

A Cluster Analysis Study of Opportune Adoption of Electric Drive Vehicles for Better Greenhouse Gas Reduction

[+] Author Affiliations
Karim Hamza, Kenneth P. Laberteaux

Toyota Research Institute, Ann Arbor, MI

Paper No. DETC2016-59119, pp. V02AT03A021; 11 pages
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 2A: 42nd Design Automation Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5010-7
  • Copyright © 2016 by ASME


Adoption of electric drive vehicles (EDVs) presents an opportunity for reduction of greenhouse gas (GHG) emissions. From an individual vehicle standpoint however, the GHG reduction can vary significantly depending on the type of driving that the vehicle is used for. This is primarily due to conventional vehicles (CVs) having poor energy efficiency in stop-and-go city-like driving compared to their performance in steady highway-like driving. This study attempts to examine the magnitude of the differential in GHG reduction benefit for real driving behaviors obtained from California Household Travel Survey (CHTS-2013). Recorded vehicles speed traces are analyzed via a fuel economy simulator then a hybrid support vector clustering (SVC) technique is applied to form groups of vehicle samples with similar driving behaviors. Unlike many clustering techniques, SVC does not impose a pre-dictated number of clusters, but has a number of parameters that must be tuned in order to obtain meaningful results. Tuning of the parameters is performed via a multi-objective evolutionary algorithm (SPEA2) after formulating the cluster tuning as a two-objective problem that seeks to maximize: i) differential benefit in GHG reduction, and ii) fraction of the population that groups of vehicles represent. Results show that replacing a CV with its equivalent hybrid (HEV) can reduce GHG emissions per mile of driving by 2 to 2.5 times more for a group of vehicles (best opportune for an EDV) compared to the less opportune group.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In