0

Full Content is available to subscribers

Subscribe/Learn More  >

Hygroscopic Swelling Behavior of 3D Printed Parts due to Changes in Environmental Conditions

[+] Author Affiliations
Ju-young Park, Sangho Ha, Eunju Park, Daeil Kwon, Namhun Kim

UNIST, Ulsan, Korea

Paper No. DETC2016-59945, pp. V01AT02A038; 5 pages
doi:10.1115/DETC2016-59945
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1A: 36th Computers and Information in Engineering Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5007-7
  • Copyright © 2016 by ASME

abstract

Selective laser sintering (SLS) printers have been used for rapid prototyping, and the prototypes of part assemblies have been reported to expand or shrink over time. This paper examines the hygroscopic swelling behavior of 3D printed parts from SLS printers. A total of 10 hexahedron samples were produced using nylon-12, which is a common material used for prototyping. Half of the samples were exposed to a high temperature to reduce the moisture content, and the rest were left at a room temperature. In the meantime, 13 dimensions of each sample were measured periodically along with the local weather records including relative humidity in order to track the hygroscopic swelling behavior of the samples. The results showed that the deformation was mostly occurred to the dimensions parallel to the sintering layers. Also, changes in these dimensions were found to have a high correlation with the relative humidity regardless of temperature conditions. These results imply that changes in environmental conditions such as relative humidity result in the deformation of 3D printed parts after production. The high correlation between dimension change and relative humidity also indicates the layup orientation is a decisive factor to predict the deformation of 3D printed parts. Thus, unexpected deformation of 3D printed parts can be avoided by optimizing the parts design considering the layup orientation and by controlling the environmental conditions.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In