0

Full Content is available to subscribers

Subscribe/Learn More  >

On Multiphysics Discrete Element Modeling of Powder-Based Additive Manufacturing Processes

[+] Author Affiliations
John C. Steuben, Athanasios P. Iliopoulos, John G. Michopoulos

Naval Research Laboratory, Washington, DC

Paper No. DETC2016-59634, pp. V01AT02A032; 14 pages
doi:10.1115/DETC2016-59634
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1A: 36th Computers and Information in Engineering Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5007-7
  • Copyright © 2016 by ASME

abstract

Physically accurate modeling of powder-based additive manufacturing (AM) processes can play an enabling role for both the certification and qualification as well as the functional tailoring of materials produced by these processes. In an effort to address these needs in a computationally efficient and physically realistic manner, this paper presents the initial efforts towards the development of a methodology for simulating polydisperse particle-based AM processes by the use of the Multiphysics Discrete Element Method (MDEM). We discuss the formulation of a DEM framework for addressing the unique multiphysics behavior of AM materials and processes. In particular, we focus on coupled thermo-mechanical effects that result in residual strains and deformation. The MDEM approach is demonstrated on several test problems involving laser sintering of metal powders. The paper concludes with a discussion on how this approach may be generalized to broader classes of AM systems, and details are given regarding future work that must be accomplished in order to further develop the present methodology.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In