0

Full Content is available to subscribers

Subscribe/Learn More  >

Embedded Sensors and Feedback Loops for Iterative Improvement in Design Synthesis for Additive Manufacturing

[+] Author Affiliations
Mehdi Nourbakhsh, Michael Bergin, Daniele Grandi

Autodesk Inc., San Francisco, CA

Nigel Morris, Francesco Iorio

Autodesk Inc., Toronto, ON, Canada

Paper No. DETC2016-59627, pp. V01AT02A031; 9 pages
doi:10.1115/DETC2016-59627
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1A: 36th Computers and Information in Engineering Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5007-7
  • Copyright © 2016 by ASME

abstract

Design problems are complex and not well-defined in the early stages of projects. To gain an insight into these problems, designers envision a space of various alternative solutions and explore various performance trade-offs, often manually. To assist designers with rapidly generating and exploring a design space, researchers introduced the concept of design synthesis methods. These methods promote innovative thinking and provide solutions that can augment a designer’s abilities to solve problems. Recent advances in technology push the boundaries of design synthesis methods in various ways: a vast number of novel solutions can be generated using high-performance computing in a timely manner, complex geometries can be fabricated using additive manufacturing, and integrated sensors can provide feedback for the next design generation using the Internet of things (IoT). Therefore, new synthesis methods should be able to provide designs that improve over time based on the feedback they receive from the use of the products. To this end, the objective of this study is to demonstrate a design synthesis approach that, based on high-level design requirements gathered from sensor data, generates numerous alternative solutions targeted for additive manufacturing. To demonstrate this method, we present a case study of design iteration on a car chassis. First, we installed various sensors on the chassis and measured forces applied during various maneuvers. Second, we used these data to define a high-level engineering problem as a collection of design requirements and constraints. Third, using an ensemble of topology and beam-based optimization techniques, we created a number of novel solutions. Finally, we selected one of the design solutions and because of some manufacturability constraints we, 3D-printed a prototype for the next generation of design at one third scale. The results show that designs generated from the proposed method were up to 28% lighter than the existing design. This paper also presents various lessons learned to help engineers and designers with a better understanding of challenges applying new technologies in this research.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In