0

Full Content is available to subscribers

Subscribe/Learn More  >

Molecular Dynamics Simulation With Interval-Valued Interatomic Potentials

[+] Author Affiliations
Anh Tran, Yan Wang

Georgia Institute of Technology, Atlanta, GA

Paper No. DETC2016-59431, pp. V01AT02A022; 10 pages
doi:10.1115/DETC2016-59431
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1A: 36th Computers and Information in Engineering Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5007-7
  • Copyright © 2016 by ASME

abstract

In molecular dynamics (MD) simulation, the two main sources of uncertainty are the interatomic potential functions and thermal fluctuation. The accuracy of the interatomic potential functions plays a vital role toward the reliability of MD simulation prediction. Reliable molecular dynamics (R-MD) is an interval-based MD simulation platform, where atomistic positions and velocities are represented as Kaucher (or generalized) intervals to capture the uncertainty associated with the inter-atomic potentials. The advantage of this uncertainty quantification (UQ) approach is that the uncertainty effect can be assessed on-the-fly with only one run of simulation, and thus the computational time for UQ is significantly reduced. In this paper, an extended interval statistical ensemble is introduced to quantify the uncertainty associated with the system control variables, such as temperature and pressure at each time-step. This method allows for quantifying and propagating the uncertainty in the system as MD simulation advances. An example of interval isothermal-isobaric (NPT) ensemble is implemented to demonstrate the feasibility of applying the intrusive UQ technique toward MD simulation.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In