0

Full Content is available to subscribers

Subscribe/Learn More  >

Effect of Temperature Dependent Properties on the Applicability of the Heat Conduction Equations for Rapid Heat Deposition Applications

[+] Author Affiliations
John G. Michopoulos, Athanasios P. Iliopoulos

Naval Research Laboratory, Washington, DC

Andrew Birnbaum

Leidos, Inc., Washington, DC

Paper No. DETC2016-59631, pp. V01AT02A017; 9 pages
doi:10.1115/DETC2016-59631
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1A: 36th Computers and Information in Engineering Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5007-7
  • Copyright © 2016 by ASME

abstract

Despite significant efforts examining the suitability of the proper form of the heat transfer partial differential equation (PDE) as a function of the time scale of interest (e.g. seconds, picoseconds, femtoseconds, etc.), very little work has been done to investigate the millisecond-microsecond regime. This paper examines the differences between the parabolic and one of the hyber-bolic forms of the heat conduction PDE that govern the thermal energy conservation on these intermediate timescales. Emphasis is given to the types of problems where relatively fast heat flux deposition is realized. Specifically, the classical parabolic form is contrasted against the lesser known Cattaneo-Vernotte hyperbolic form. A comparative study of the behavior of these forms over various pulsed conditions are applied at the center of a rectangular plate. Further emphasis is given to the variability of the solutions subject to constant or temperature-dependent thermal properties. Additionally, two materials, Al-6061 and refractory Nb1Zr, with widely varying thermal properties, were investigated.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In