Full Content is available to subscribers

Subscribe/Learn More  >

Total Lagrangian Formulation for Large Deformation Modeling Using Uniform Background Mesh

[+] Author Affiliations
Nikhil Bhosale, Ashok V. Kumar

University of Florida, Gainesville, FL

Paper No. DETC2016-60402, pp. V01AT02A008; 7 pages
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1A: 36th Computers and Information in Engineering Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5007-7
  • Copyright © 2016 by ASME


Mesh generation difficulties can be avoided when a background mesh rather than a mesh that conforms to the geometry is used for the analysis. The geometry is represented by equations and is independent of the mesh and is immersed in the background mesh. The solution to boundary value problems is approximated or piece-wise interpolated using the background mesh. The main challenge is in applying the boundary conditions because the boundaries may not have any nodes on them. Implicit boundary method has been used for linear static and dynamic analysis and has shown to be an effective approach for imposing boundary conditions but has never been applied to nonlinear problems. In this paper, this approach is extended to large deformation nonlinear analysis using the Total Lagrangian formulation. The equations are solved using the widely used modified Newton-Raphson method with loads applied over many load steps. Several test examples are studied and compared with traditional finite element analysis software for verification.

Copyright © 2016 by ASME
Topics: Deformation , Modeling



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In