0

Full Content is available to subscribers

Subscribe/Learn More  >

Data Driven Parametrization for Flexible Airfoils and Predictive Aerodynamics

[+] Author Affiliations
P. Venkataraman

Rochester Institute of Technology, Rochester, NY

Paper No. DETC2016-59289, pp. V01AT02A003; 8 pages
doi:10.1115/DETC2016-59289
From:
  • ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
  • Volume 1A: 36th Computers and Information in Engineering Conference
  • Charlotte, North Carolina, USA, August 21–24, 2016
  • Conference Sponsors: Design Engineering Division, Computers and Information in Engineering Division
  • ISBN: 978-0-7918-5007-7
  • Copyright © 2016 by ASME

abstract

NASA achieved an important milestone in aircraft design the past year by flight testing a shapeshifting wing. The design moved the rear region of the wing through large deflection to provide flap operation for takeoff and landing. The next step is inflight surface modification of the entire wing. Underlying the three dimensional wing is the two-dimensional airfoil shape that anchors the wing aerodynamic performance. Many parametric definition of airfoils have been used for optimizing airfoil and wing aerodynamics but these analysis were made for fixed wing configurations. For flexible airfoils, it is important to recognize that the lofting of shapes in flight will happen around a parent airfoil. From a practical perspective it is likely that only a narrow range of shapes will be possible because of limited actuator locations. With this in mind a new Bézier parameterization scheme is introduced that can reproduce current airfoils with the assurance that original aerodynamics is maintained if not improved. Two Bézier curves are used to define the airfoil. One for the top surface and the other for the bottom surface. It is shown that this parametrization lends itself to fixed abscissa placement of control points for all airfoils, identifying possible actuator locations. Bézier curves change globally to local variation in geometry so a few points can generate an effective flexible airfoil. Coupling these changes with a simple analysis program can easily generate aerodynamic sensitivity information to physical shape changes based on the changes in a limited set of control points. This will provide the ability to create a shape based on a new aerodynamic demand while in flight. This paper presents the development of the parameterization scheme only.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In