0

Full Content is available to subscribers

Subscribe/Learn More  >

Sand Flow Regimes in Slightly Upward Inclined Gas-Liquid Stratified Flow

[+] Author Affiliations
Ramin Dabirian, Ram S. Mohan, Ovadia Shoham

University of Tulsa, Tulsa, OK

Gene Kouba

Independent Consultant, Houston, TX

Paper No. FEDSM2016-7729, pp. V01BT28A003; 7 pages
doi:10.1115/FEDSM2016-7729
From:
  • ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1B, Symposia: Fluid Mechanics (Fundamental Issues and Perspectives; Industrial and Environmental Applications); Multiphase Flow and Systems (Multiscale Methods; Noninvasive Measurements; Numerical Methods; Heat Transfer; Performance); Transport Phenomena (Clean Energy; Mixing; Manufacturing and Materials Processing); Turbulent Flows — Issues and Perspectives; Algorithms and Applications for High Performance CFD Computation; Fluid Power; Fluid Dynamics of Wind Energy; Marine Hydrodynamics
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5029-9
  • Copyright © 2016 by ASME

abstract

Sand particles are produced from the reservoir with low formation strength. A sand management system is required to be designed to keep the sand particles moving so as to prevent them from accumulating in the pipeline. Operating under unnecessarily high fluid velocities is not cost effective, moreover, it can lead to equipment failure; therefore, it is required to find the minimum velocity, known as critical sand deposition velocity, to keep the particles constantly moving.

In order to assess the critical sand deposition condition, a unique test facility was designed and constructed with 4-in ID PVC pipeline, which enables the pipe to be inclined 1.5° upward. Experiments were conducted with air-water-glass beads at low sand concentrations (< 10,000 ppm), and the air and water flow rates were selected to ensure stratified flow regime along the pipe. At constant superficial liquid velocity the gas velocity was reduced to find the critical sand deposition velocity.

The experimental results reveal that air-water flow regime plays an important role in particle transport; slug flow has high capability to transport particles at the pipe bottom, while the stratified flow has high risk of sand deposition. As long as the sand dunes are observed at the pipe bottom, the critical sand deposition velocities slightly increase with concentrations, while for stationary bed, the critical velocity increases exponentially with concentration.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In