0

Full Content is available to subscribers

Subscribe/Learn More  >

Computational Analysis of 3D Fin-Fin Interaction in Fish’s Steady Swimming

[+] Author Affiliations
Pan Han, Geng Liu, Yan Ren, Haibo Dong

University of Virginia, Charlottesville, VA

Paper No. FEDSM2016-7699, pp. V01AT04A006; 6 pages
doi:10.1115/FEDSM2016-7699
From:
  • ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1A, Symposia: Turbomachinery Flow Simulation and Optimization; Applications in CFD; Bio-Inspired and Bio-Medical Fluid Mechanics; CFD Verification and Validation; Development and Applications of Immersed Boundary Methods; DNS, LES and Hybrid RANS/LES Methods; Fluid Machinery; Fluid-Structure Interaction and Flow-Induced Noise in Industrial Applications; Flow Applications in Aerospace; Active Fluid Dynamics and Flow Control — Theory, Experiments and Implementation
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5028-2
  • Copyright © 2016 by ASME

abstract

Three-dimensional numerical simulations are used to investigate the hydrodynamic performance and the wake patterns of a sunfish in steady swimming. Immersed boundary method for deformable attaching bodies (IBM-DAB) are used to handle complex moving boundaries of one solid body (fish body) attached with several membranes (fins). The effects of the vortices shed from both the dorsal and anal fins on the hydrodynamic performance of the caudal fin are analyzed by prescribing an undulatory swimming kinematics to a full body sunfish model. Results show that both the dorsal fin vortices and the anal fin vortices can increase the thrust and efficiency of the caudal fin comparing to caudal fin only case. This is because the dorsal/anal fin not only can feed vorticity into the caudal fin wake via vortex shedding, but also can modulate the flow in the downstream in a way of forming a jet with stronger backward component.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In