0

Full Content is available to subscribers

Subscribe/Learn More  >

CFD Simulations of Aerosol Particles Deposition in a Venturi Meter Used in Smoke Sampling Devices

[+] Author Affiliations
Omar A. Melhem

Lebanese International University, Tripoli, Lebanon

Paper No. FEDSM2016-7657, pp. V01AT03A010; 6 pages
doi:10.1115/FEDSM2016-7657
From:
  • ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
  • Volume 1A, Symposia: Turbomachinery Flow Simulation and Optimization; Applications in CFD; Bio-Inspired and Bio-Medical Fluid Mechanics; CFD Verification and Validation; Development and Applications of Immersed Boundary Methods; DNS, LES and Hybrid RANS/LES Methods; Fluid Machinery; Fluid-Structure Interaction and Flow-Induced Noise in Industrial Applications; Flow Applications in Aerospace; Active Fluid Dynamics and Flow Control — Theory, Experiments and Implementation
  • Washington, DC, USA, July 10–14, 2016
  • Conference Sponsors: Fluids Engineering Division
  • ISBN: 978-0-7918-5028-2
  • Copyright © 2016 by ASME

abstract

Smoke sampling devices are used in several fields to study dynamics of smoke aerosols. An important criterion in designing smoke sampling devices is that flow paths leading to where the sample is characterized are constructed such that deposition of aerosol particles along the paths is minimized. Sampling devices often include a Venturi flow meter installed downstream of the smoke source, which may significantly alter the composition of the aerosol reaching the sample analyzer. The current work employs Computational Fluid Dynamics (CFD) to model particle deposition within the flow meter and to examine the effects of different design parameters. This study focuses on particles with sizes ranging from 0.01 to 100 microns, for which three main mechanisms for deposition can be identified: inertial impaction, gravitational sedimentation, and Brownian diffusion. It has been shown that inertial deposition is negligible for ultrafine particles (5–560 nm) and it becomes noticeable for particles in the micron size range. Also, deposition fractions increase with increasing particle sizes. Moreover, inertial particle deposition increases with increasing volume flow rates.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In