Full Content is available to subscribers

Subscribe/Learn More  >

Analysis of Maximum Elasto-Plastic Response of Multi-Degree-of-Freedom Oscillators Based on a Modal Combination of Equivalently Linearized Response of Each Mode

[+] Author Affiliations
Tomoyo Taniguchi, Yusuke Ono

Tottori University, Tottori, Japan

Hiroki Nishiraku

Chodai Co. Ltd., Osaka, Japan

Paper No. PVP2016-63865, pp. V008T08A010; 10 pages
  • ASME 2016 Pressure Vessels and Piping Conference
  • Volume 8: Seismic Engineering
  • Vancouver, British Columbia, Canada, July 17–21, 2016
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5046-6
  • Copyright © 2016 by ASME


This study develops a new analytical method for evaluating maximum elasto-plastic displacement of multi-degree-of-freedom (MDOF) oscillators under the action of base excitation based on a modal combination. The essence is that modal frequencies, shapes and damping during yielding of any member of the MDOF oscillators are readily specified by the modal analysis with the secondary stiffness of the members being yielded. In addition, assuming that a bilinear hysteresis may describe the force-displacement relationship of each mode, an equivalently linearized system consisting of a single-degree-of-freedom (SDOF) oscillator is introduced to approximate maximum elsato-plastic displacement of each mode. Employing the SRSS-rule, the maximum elasto-plastic displacement of the MDOF oscillator subjected to Kobe-NS accelerogram is calculated and compared with that computed by the commercial software. Applicability of the proposed method to evaluating maximum elasto-plastic displacement of the MDOF oscillator is thoroughly discussed.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In