Full Content is available to subscribers

Subscribe/Learn More  >

Behaviour of Polymers in High Pressure Environments as Applicable to the Hydrogen Infrastructure

[+] Author Affiliations
Nalini C. Menon, Alan M. Kruizenga, Chris San Marchi, April Nissen

Sandia National Laboratories, Livermore, CA

Kyle J. Alvine, Kriston Brooks

Pacific Northwest National Laboratory, Richland, WA

Paper No. PVP2016-63713, pp. V06BT06A037; 16 pages
  • ASME 2016 Pressure Vessels and Piping Conference
  • Volume 6B: Materials and Fabrication
  • Vancouver, British Columbia, Canada, July 17–21, 2016
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5043-5
  • Copyright © 2016 by ASME


Polymeric materials have played a significant role in the adoption of a multi-materials approach towards the development of a safe and cost-effective solution for hydrogen fuel storage in Fuel Cell Vehicles (FCVs). Numerous studies exist with regards to the exposure of polymeric materials to gaseous hydrogen as applicable to the hydrogen infrastructure and related compression, storage, delivery, and dispensing operations of hydrogen at fueling stations. However, the behavior of these soft materials under high pressure hydrogen environments has not been well understood. This study involves exposure of select thermoplastic and elastomeric polymers to high pressure hydrogen (70–100 MPa) under static, isothermal, and isobaric conditions followed by characterization of physical properties and mechanical performance. Special attempt has been made to explain hydrogen effects on polymer properties in terms of polymer structure-property relationships, and also understand the influential role played by additives such as fillers, plasticizers, and processing aids in polymers exposed to hydrogen. Efforts have also been focused on deriving suitable conditions of static testing in high pressure hydrogen environments as a valuable part of developing a suitable test methodology for such systems. Understanding the relationships between polymer composition and microstructure, time of exposure, rate of depressurization, purge and exposure conditions, etc. in this simple study will help better define the test parameters for upcoming high pressure cycling experiments in hydrogen.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In