0

Full Content is available to subscribers

Subscribe/Learn More  >

Characterisation of Microstructure and Properties of a Transition Weld

[+] Author Affiliations
W. J. Brayshaw, A. H. Sherry, M. G. Burke

University of Manchester, Manchester, UK

P. James

Amec Foster Wheeler, Warrington, UK

Paper No. PVP2016-63045, pp. V06BT06A007; 10 pages
doi:10.1115/PVP2016-63045
From:
  • ASME 2016 Pressure Vessels and Piping Conference
  • Volume 6B: Materials and Fabrication
  • Vancouver, British Columbia, Canada, July 17–21, 2016
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5043-5
  • Copyright © 2016 by ASME

abstract

Transition welds represent a challenge for the assessment of structural integrity of nuclear plant due to the complexity of the microstructure, properties and local stress state. This paper presents the initial findings of a study aimed at characterising the local microstructure and properties of a transition weld between SA508-4N ferritic steel and SS316LN austenitic stainless steel using a nickel-base filler of Alloy 82. The local microstructures and local composition of the material interfaces are characterised using backscattered electron imaging and Energy-dispersive X-ray spectroscopy. The ferritic steel shows significant grain refinement in the heat affected zone compared to the base metal. This refinement is also observed in the heat affected zone of the austenitic stainless steel although not as significant. Micro-hardness testing has also been incorporated to provide an indication of the influence of local microstructure on flow properties across the weld region. The results indicate a hardness range of between 180–340HV across the weld with the highest value in the heat affected zone of the ferritic steel and the lowest in the austenitic stainless steel. Yield and flow properties derived from flat transweld tensile tests incorporating digital image correlation are related to the micro-hardness results and microstructural characterisation, and an initial assessment of the fracture mechanism performed using fractography.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In