0

Full Content is available to subscribers

Subscribe/Learn More  >

Critical Flaw Evaluation of Cast Austenitic Stainless Steel: Deterministic and Probabilistic Fracture Analyses

[+] Author Affiliations
M. F. Uddin, R. E. Kurth, C. Sallaberry, G. M. Wilkowski, F. W. Brust

Engineering Mechanics Corporation of Columbus, Columbus, OH

D. Rudland

US Nuclear Regulatory Commission, Washington, DC

Paper No. PVP2016-63850, pp. V06AT06A076; 9 pages
doi:10.1115/PVP2016-63850
From:
  • ASME 2016 Pressure Vessels and Piping Conference
  • Volume 6A: Materials and Fabrication
  • Vancouver, British Columbia, Canada, July 17–21, 2016
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5042-8
  • Copyright © 2016 by ASME

abstract

Toughness reduction in cast austenitic stainless steels (CASS) due to thermal embrittlement is a growing concern for flaw tolerance evaluation in nuclear power plants. As the fracture toughness diminishes due to thermal-aging, some aged CASS materials have the potential to reach much lower toughness values than at the beginning of life. CASS also shows a high variability in toughness even for a given chemical composition, operating temperature, ferrite number or chrome equivalent. This is mainly due to the combined ferritic and austenitic microstructure and potentially large grain sizes. This variability in toughness needs to be used when developing flaw evaluation criteria in Section XI of the ASME Boiler and Pressure Vessel Code.

In this work, deterministic critical flaw size evaluations were conducted for one of the low-toughness CASS materials with a ferrite number (FN) lower than 25. Six different methods were used to evaluate the critical flaw sizes for circumferential surface flaws. In order to account for the large variability in CASS material properties, a probabilistic fracture mechanics (PFM) procedure was developed. Based on all deterministic analyses, the Dimensionless Plastic-Zone Parameter analysis was used to perform the probabilistic critical flaw evaluation. As an example calculation, an actual toughness distribution from a single US PWR plant chemical composition (using a thermal-aging model) was used to perform the probabilistic analysis. The probabilistic analysis provides the critical flaw sizes at various stress ratios for Service Level A (10−6) and Service Level B (10−5) probability of failure for this particular case.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In