Full Content is available to subscribers

Subscribe/Learn More  >

Further Evaluation of the Structural Integrity of the Chinese Qinshan 300-MWe Reactor Pressure Vessel Under Pressurized Thermal Shock Using the Master Curve Method

[+] Author Affiliations
Yupeng Cao, Yinbiao He, Hui Li

Shanghai Nuclear Engineering Research and Design Institute, Shanghai, China

Hui Hu

East China University of Science and Technology, Shanghai, China

Paper No. PVP2016-63799, pp. V06AT06A039; 10 pages
  • ASME 2016 Pressure Vessels and Piping Conference
  • Volume 6A: Materials and Fabrication
  • Vancouver, British Columbia, Canada, July 17–21, 2016
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5042-8
  • Copyright © 2016 by ASME


Pressurized thermal shock (PTS) is a potential major threat to the structural integrity of the reactor pressure vessel (RPV) in a nuclear power plant. An earlier work on the PTS analysis of the Chinese Qinshan 300-MWe RPV was performed with the single parameter fracture mechanics method by Shanghai nuclear engineering research and design institute (SNERDI). The integrity analysis of this RPV under PTS was re-evaluated using the Master Curve method later in the paper PVP2015-45577[1]. The objective of this paper is to expand on the previous work, covering more crack geometries and transients to discuss the differences in the use of Master curve based and single parameter linear elastic fracture mechanics based method for PTS analysis. Attempts are made to consider additional size adjustment to the long crack front, which yields more reasonable maximum allowable transition temperature.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In