Full Content is available to subscribers

Subscribe/Learn More  >

Direct Observation of Elastic and Plastic Strain Fields During Ductile Tearing of a Ferritic Steel

[+] Author Affiliations
Harry E. Coules, Matthew J. Peel, Sam J. Oliver, Derreck G. A. Van Gelderen

University of Bristol, Bristol, UK

Graeme C. M. Horne

Frazer-Nash Consultancy Ltd., Bristol, UK

Thomas Connolley

Diamond Light Source, Didcot, UK

Paper No. PVP2016-63345, pp. V06AT06A021; 9 pages
  • ASME 2016 Pressure Vessels and Piping Conference
  • Volume 6A: Materials and Fabrication
  • Vancouver, British Columbia, Canada, July 17–21, 2016
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5042-8
  • Copyright © 2016 by ASME


Residual and thermal stresses have a considerable effect on the process of brittle fracture. In addition to this, the effect of these stresses on elastic-plastic fracture is known to be significant. This is accounted for in structural integrity assessment methodologies such as R6 Rev 4 and BS 7910:2013 by introducing factors representing the interaction between primary and secondary stresses (those that do and do not contribute towards plastic collapse, respectively).

The initiation of ductile tearing in a ferritic pressure vessel steel was studied experimentally. Energy-dispersive X-ray diffraction was used to determine lattice strains in the vicinity of a crack tip in modified compact tension specimens at incremental loading steps until the initiation of ductile tearing. The X-ray diffraction measurements allowed the stress field to be evaluated with a high spatial resolution. At the same time, the pattern of total strain at the surface of the specimen was observed using digital image correlation. Prior to the experiment, two samples were subjected to localised out-of-plane compression ahead of the crack tip to introduce a residual stress field and hence significant crack loading in the absence of external load. Stress and strain field data for cracked specimens, with and without a pre-existing residual stress field, indicated significant differences in the development of plastic strain up to the point of tearing initiation. It is shown that this can only be explained when both residual stress and prior material hardening are taken into account.

Copyright © 2016 by ASME
Topics: Steel



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In