Full Content is available to subscribers

Subscribe/Learn More  >

Damage Detection in Thick Steel Plates Using Guided Ultrasonic Waves and Non-Contact Laser Vibrometry

[+] Author Affiliations
Zhenhua Tian, Stephen Howden, Linlin Ma, Bin Lin, Lingyu Yu

University of South Carolina, Columbia, SC

Paper No. PVP2016-63744, pp. V06AT06A018; 6 pages
  • ASME 2016 Pressure Vessels and Piping Conference
  • Volume 6A: Materials and Fabrication
  • Vancouver, British Columbia, Canada, July 17–21, 2016
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5042-8
  • Copyright © 2016 by ASME


This paper presents damage detection in thick steel plates by using guided ultrasonic waves and non-contact laser vibrometry. Guided waves are generated by piezoelectric transducers (PZT). A scanning laser Doppler vibrometer is used to measure the full velocity wavefield of guided waves in the plate, based on the Doppler Effect. The measured full wavefield in terms of time and space contains a wealth of information regarding guided wave propagation in the plate as well as guided wave interaction with damage. Through wavefield analysis, the cumulative energy map of damage induced waves is derived for damage detection and quantification. For the proof of concept, an experiment is performed on a ¼ inch steel plate with three surface defects of different sizes and shapes. The detection result shows that the locations and sizes of high energy areas in the cumulative energy map agree well with those of the actual defects. Overall the method presented in this paper using guided waves and non-contact laser vibrometry is effective to detect and quantify location, size and shape of damage in thick steel plates.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In