Full Content is available to subscribers

Subscribe/Learn More  >

Experimental and Numerical Analysis of Structures With Bolted Joints Subjected to Low Impact Load: Part 1

[+] Author Affiliations
Kumarswamy Karpanan

FMC Technologies, Inc., Houston, TX

Brendan O’Toole

University of Nevada Las Vegas, Las Vegas, NV

Paper No. PVP2016-63711, pp. V005T05A023; 12 pages
  • ASME 2016 Pressure Vessels and Piping Conference
  • Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 24th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Electric Power Research Institute (EPRI) Creep Fatigue Workshop
  • Vancouver, British Columbia, Canada, July 17–21, 2016
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5041-1
  • Copyright © 2016 by ASME


Bolted joints are the most common type of fastener in army vehicles and play a very important role in maintaining the structural integrity of combat vehicles. In combat, these vehicles may be subjected to various kinds of shock loading, such as initiated by a mine blast, projectile impact, or frontal crash.

This study analyzes the transient behavior of structures with bolted joints subjected to impact or shock loads using experimental methods and Finite Element Analysis (FEA). Factors such as damping that affect the bolted joint structures for shock loading are studied. Only a limited amount of published literature describes the proper method for analyzing transient shock propagation across bolted connections for high-impact loading. The initial case study focused on a simple cantilever beam with a bolted lap joint subjected to relatively low levels of impact force. The second case study used a flat plate bolted to a hat-section. These simple configurations are representative of structures found in many military ground vehicles that can be subjected to transient impact and blast loads. These structures were subjected to low-impact loading (non-destructive) using impact hammers and high-impact loading (destructive) using an air gun. The responses were measured using accelerometers. LS-DYNA FE solver was used to simulate the shock propagation in the bolted structures.

For all the bolted structures, the modal analysis was performed both experimentally and numerically. The results are in excellent agreement for the lower modes and exhibit a small deviation in the higher modes. Secondly, the time history responses of experimental and FE analysis are compared. This is a two-part paper. In this first paper, a simplified bolted connection (bolted cantilever beam) is used for studying the low-impact shock propagation.

Copyright © 2016 by ASME



Interactive Graphics


Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In