0

Full Content is available to subscribers

Subscribe/Learn More  >

Influence of Residual Stress due to Prior Overloading on the Fatigue Life of a Notched Plate

[+] Author Affiliations
Kumarswamy Karpanan

FMC Technologies, Inc., Houston, TX

Paper No. PVP2016-63697, pp. V005T05A010; 11 pages
doi:10.1115/PVP2016-63697
From:
  • ASME 2016 Pressure Vessels and Piping Conference
  • Volume 5: High-Pressure Technology; Rudy Scavuzzo Student Paper Symposium and 24th Annual Student Paper Competition; ASME Nondestructive Evaluation, Diagnosis and Prognosis Division (NDPD); Electric Power Research Institute (EPRI) Creep Fatigue Workshop
  • Vancouver, British Columbia, Canada, July 17–21, 2016
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5041-1
  • Copyright © 2016 by ASME

abstract

During autofrettage, pressure vessels are subjected to high internal pressure, causing the internal wall to yield plastically. When the internal pressure is released, the inner wall of the vessel develops compressive residual stress. Similarly, when a subsea component is hydrotested, some of the highly stressed regions yield during hydrotesting and, when the pressure is released, these regions develop compressive residual stress. Fatigue life is greatly influenced by local stress on the component surface. Fatigue crack initiation primarily depends on the cyclic stress or strain and the residual stress state. Tensile residual stress decreases fatigue life and the compressive residual stress significantly increases fatigue life. This is true for both fatigue crack initiation and propagation.

In this paper, effects of residual stress on a notched plate are studied by subjecting it to an initial overload cycle and subsequent low loading cycles. Tensile and compressive overloads on the notched plate induce compressive and tensile residual stresses, respectively. An elastic-plastic finite element analysis (FEA) was performed to simulate the overload and low loading cycles on the notched plate. The stress and strain from the FEA is used to perform strain-based fatigue analysis. ASME VIII-3, Brown-Miller (B-M), Maximum shear strain, Socie-Bannantine, and Fatemi-Socie methods are used for calculating the fatigue life of the notched plate. Fatigue life predicted by both stress and strain methods matches well with the test fatigue data.

Copyright © 2016 by ASME
Topics: Stress , Fatigue life

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In