0

Full Content is available to subscribers

Subscribe/Learn More  >

Bifurcation Analysis and the Role of Normal Form Symmetries on the Harmonic Forced Inline Oscillation of the Cylinder Wake

[+] Author Affiliations
N. Nabatian

Shahid Beheshti University, Tehran, Iran

N. W. Mureithi

Ecole Polytechnique de Montreal, Montreal, QC, Canada

Paper No. PVP2016-63334, pp. V004T04A024; 9 pages
doi:10.1115/PVP2016-63334
From:
  • ASME 2016 Pressure Vessels and Piping Conference
  • Volume 4: Fluid-Structure Interaction
  • Vancouver, British Columbia, Canada, July 17–21, 2016
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5040-4
  • Copyright © 2016 by ASME

abstract

Vortex shedding over a cylinder is strongly affected by the cylinder oscillation. The dynamics of the cylinder wake subjected to harmonic forced excitation in the inline direction at Re = 200 is investigated in this work. Two dominant modes of the transverse velocity field are considered to model and predict the nonlinear interaction of 2D vortex shedding. The normal form symmetries have the main role in the pattern formation. The interaction of two steady modes in the presence of O(2) × S1 symmetry is described by equivariant theory. Considering the symmetries, the amplitude equations are developed with the frequency saturation information included by the addition of complex coefficients. The reduced model is expanded up to 7th order, in order to include the spatio-temporal effects. The coefficients of the model are obtained from 2D simulations of the cylinder wake flow.

The physical significance of the inline amplitude oscillation on the wake dynamics is captured by the variation of the two linear coefficients of the low order model. Similarly to the numerical results, as the amplitude of oscillation increases, two limit cycles undergo the symmetry-breaking bifurcation leading to a quasi-periodic state. The existence of the second frequency in addition to the natural shedding frequency is manifested as the small amplitude oscillation in the quasi-periodic state. For a forcing amplitude A/D = 0.5, the quasi-periodic state undergoes a torus doubling bifurcation. The dominant frequency of the bifurcated S mode matches the lift coefficient shedding frequency at A/D = 0.5 obtained from the numerical computation. The lift coefficient signal is not absolutely periodic due to the presence of the other peaks in addition to the dominant one at St = 0.1 representing the quasi-periodic flow pattern. The modulated travelling waves bifurcated from the low order model have mode S as the basic v-velocity mode which verifies the symmetric torus-doubled transverse velocity pattern observed in CFD simulation. Thus the proposed low order model can predict, with reasonable accuracy, the bifurcation sequence of the forced cylinder wake dynamic transitions observed in the numerical computation results.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In