0

Full Content is available to subscribers

Subscribe/Learn More  >

An Experimental Study on the Damping of a Steam Generator Tube With Gap Supports in Air and Water

[+] Author Affiliations
Heung Seok Kang, Kang Hee Lee, Chang Whan Shin

KAERI, Daejeon, Korea

Chang Hoon Ha, Tae Jeung Park

Doosan Heavy Industry, Changwon, Korea

Paper No. PVP2016-63122, pp. V004T04A019; 7 pages
doi:10.1115/PVP2016-63122
From:
  • ASME 2016 Pressure Vessels and Piping Conference
  • Volume 4: Fluid-Structure Interaction
  • Vancouver, British Columbia, Canada, July 17–21, 2016
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5040-4
  • Copyright © 2016 by ASME

abstract

In this study, we present an analysis and experiment on the fluid damping of a Steam Generator (SG) tube with one and several plate-type supports that are submerged under water. For the damping measurement, a short tube of 2.2 meters in length with one gap support as well as a long tube of up to 10 meters with 11 and 13 supports are used. To see a fluid effect through an analytical approach, Mulcahy’s theory on a tube with finite-length gap support and Pettigrew’s empirical correlation for SG design were reviewed. The theoretical model is good at predicting the fluid damping at the first mode in a low frequency range which is an inactive mode at the support, while the practical model is much better at the higher modes, which are active modes, rocking modes, at the support(s). Experimental results from the short length tube with single support shows good agreement with a previous measurement by other researchers. A theoretical model and empirical correlation are in good agreement. Our measurements from a longer tube with several supports are reasonable compared with the others. There is, however, a wide discrepancy between predictions by the two models. As compared with the whole measurements, the theoretical model seems to be a good guideline in a low frequency range, while an empirical model is relatively good guideline in a high frequency range. Based on the whole collected data, a new correlation modified from Pettigrew’s correlation is suggested.

Copyright © 2016 by ASME
Topics: Boilers , Damping , Water

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In