0

Full Content is available to subscribers

Subscribe/Learn More  >

Primitive Model for the Random Excitation of a Tube Under Two-Phase Cross Flow

[+] Author Affiliations
Laurent Borsoi, Philippe Piteau, Xavier Delaune

CEA-Saclay, Gif-Sur-Yvette, France

Jose Antunes

Universidade de Lisboa, Bobadela, Portugal

Paper No. PVP2016-63241, pp. V004T04A015; 12 pages
doi:10.1115/PVP2016-63241
From:
  • ASME 2016 Pressure Vessels and Piping Conference
  • Volume 4: Fluid-Structure Interaction
  • Vancouver, British Columbia, Canada, July 17–21, 2016
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5040-4
  • Copyright © 2016 by ASME

abstract

Flow-induced vibration of heat-exchangers tubes is particularly studied in the nuclear industry for safety and cost reasons. It implies to have, among others, relevant characterizations of the random buffeting forces the cross-flow applies to the tube bundle. Work is still needed in this domain, particularly for two-phase flow, to improve the available data as the ones for PWR steam generator, currently very envelope.

In parallel to get new experimental data, using “real” or substitutional mixtures (e.g. air-water instead of steam-water for PWR), it is essential to understand the basic excitation mechanisms which induce the vibrations under two-phase flow, as e.g. the influence of flow regimes. In this general framework, what can be learnt from deliberately simple models may be a contributive help.

As a first attempt on this issue, the paper deals with the elementary case of a single rigid tube under air-water cross flow. This case is part of experiments carried out at CEA-Saclay with bundles where both tube support reactions and flow characteristics are measured, with respectively piezo-electrical sensors and bi-optical probes (BOP). The information provided by the BOP (mean interface velocity, statistical distribution, etc.) feeds a primitive model of water “droplet” impulses on the tube, based on a lot of crude assumptions about impact velocity, momentum conservation, impulse shape, statistical independence, etc., and which uses analytical results of random processes constructed from the superposition of random pulses.

The “equivalent” excitation force, obtained in terms of dimensional PSD, is compared to the one measured in the drag and lift direction with an acceptable agreement, at least in order of magnitude.

Comments and lessons are drawn from this first attempt, and some paths are advanced to improve this kind of primitive models, especially for treating rigid square bundles under air-water cross flow.

Copyright © 2016 by ASME

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In