0

Full Content is available to subscribers

Subscribe/Learn More  >

Elastic Allowable Stress Basis for Elevated Temperature Design in the Creep Regime

[+] Author Affiliations
Chithranjan Nadarajah

Becht Engineering Co. Inc., Fairfax, VA

Benjamin F. Hantz

Valero, San Antonio, TX

Sujay Krishnamurthy

UOP LLC, Des Plaines, IL

Paper No. PVP2016-63136, pp. V003T03A090; 11 pages
doi:10.1115/PVP2016-63136
From:
  • ASME 2016 Pressure Vessels and Piping Conference
  • Volume 3: Design and Analysis
  • Vancouver, British Columbia, Canada, July 17–21, 2016
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5039-8
  • Copyright © 2016 by ASME

abstract

ASME Section VIII, Division II, Boiler and Pressure Vessel Code does not have any design by analysis procedures for designing pressure vessel components in the creep regime. This publication presents a methodology for evaluating and categorizing elastic stresses calculated from finite element stress analysis when designing in the creep regime. The proposed methodology is compared with multi axial creep results for various pressure vessel components and found to be in reasonable agreement.

Copyright © 2016 by ASME
Topics: Creep , Temperature , Stress , Design

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In