0

Full Content is available to subscribers

Subscribe/Learn More  >

A Case Study Evaluating the Effects of High Cycle Thermal Loading Within a Pressurised Water Reactor Mixing Tee Using Conjugate CFD/FE Methods

[+] Author Affiliations
James Wilson, Chris Currie, Michael Jones, Lewis Davenport

Rolls-Royce plc, Derby, UK

Paper No. PVP2016-63233, pp. V003T03A050; 6 pages
doi:10.1115/PVP2016-63233
From:
  • ASME 2016 Pressure Vessels and Piping Conference
  • Volume 3: Design and Analysis
  • Vancouver, British Columbia, Canada, July 17–21, 2016
  • Conference Sponsors: Pressure Vessels and Piping Division
  • ISBN: 978-0-7918-5039-8
  • Copyright © 2016 by Rolls-Royce plc

abstract

In nuclear plant piping systems thermal fatigue damage can arise at locations where there is turbulent mixing of different temperature flows. The severity of this phenomenon is difficult to assess via plant instrumentation due to the high frequencies involved. NESC report EUR 22763 EN, published in 2007, defines the “Level 1” screening criterion for the design of austenitic stainless steel mixing tees, based on recorded incidents of fatigue cracking in civil power plants. The experimental data indicates that damage due to High Cycle Thermal Loading (HCTL) is unlikely to occur if the temperature difference between the hot and cold inlet streams is less than 80°C.

The “Level 2” approach outlined by NESC provides a methodology for the calculation of a fatigue usage factor based on the assumption of a sinusoidal thermal loading at the most damaging frequency for a given ΔT. Advice is given on selection of heat transfer coefficient, fatigue curves, fatigue strength reduction factors and plasticity correction factors. Experience shows that these methods can be overly pessimistic when compared with plant operational experience.

This paper describes a case study using the more detailed NESC “Level 3” evaluation of HCTL at a Pressurised Water Reactor (PWR) mixing tee using a coupled Computational Fluid Dynamics and Finite Element Analysis (CFD/FE) analysis to evaluate the complete load spectra together with the ASME 2010 fatigue S-N curve. The CFD model used is “conjugate”, ie it calculates temperatures in both the fluid and the metal. Large Eddy Simulation (LES) was used to investigate HCTL effects using an appropriate mesh size to accurately predict the rapid fluctuations in metal temperature local to the surface. Metal temperature predictions using conjugate CFD analyses provided the input to finite element analysis, utilising rain-flow techniques, in order to derive fatigue usage factors in the areas of interest.

This study found that the severity of HCTL is influenced by various factors such as flow conditions, local geometry including bore match features, integral conical reducers that allow progressive change in pipe radius as well as branch pipe swirl penetration.

Copyright © 2016 by Rolls-Royce plc

Figures

Tables

Interactive Graphics

Video

Country-Specific Mortality and Growth Failure in Infancy and Yound Children and Association With Material Stature

Use interactive graphics and maps to view and sort country-specific infant and early dhildhood mortality and growth failure data and their association with maternal

NOTE:
Citing articles are presented as examples only. In non-demo SCM6 implementation, integration with CrossRef’s "Cited By" API will populate this tab (http://www.crossref.org/citedby.html).

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In